Lieu ENGREF
12h30 - 13h30
Lieu : Amphi 7 Rdc
Jairo Cugliari
Postdoc at SELECT team, INRIA
Travail réalisé en thèse à EDF
Titre
Prévision non paramétrique de processus à valeurs fonctionnelles.
Résumé
Nous traitons le problème de la prédiction d’un processus stochastique à valeurs fonctionnelles. Nous commençons par étudier le modèle proposé par Antoniadis et al.
(2006) dans le cadre d’une application pratique -la demande d’énergie électrique en France- où l’hypothèse de stationnarité semble ne pas se vérifier. L’écart du cadre stationnaire est double: d’une part, le niveau moyen de la série semble changer dans le temps, d’autre part il existe groupes dans les données qui peuvent être vus comme des classes de stationnarité.
Nous explorons corrections qui améliorent la performance de prédiction. Les corrections
visent à prendre en compte la présence de ces caractéristiques non stationnaires. En particulier, pour traiter l’existence de groupes, nous avons contraint le modèle de prévision à n’utiliser que les données qui appartiennet au même groupe que celui de la dernière observation disponible.
Si le regroupement est connu, un simple post-traitement suffit pour obtenir des meilleures
performances de prédiction. Si le regroupement en blocs est inconnu, nous proposons de découvrir le regroupement en utilisant des algorithmes d’analyse de classification non supervisée. La dimension infinie des trajectoires, pas nécessairement stationnaires, doit être prise en compte par l’algorithme. Nous proposons deux stratégies pour ce faire, toutes les deux basées sur les transformées en ondelettes. La première se base dans l’extraction d’attributs associés à la transformée en ondelettes discrète. L’extraction est suivie par une sélection des caractéristiques le plus significatives pour l’algorithme de classification. La seconde stratégie classifie directement les trajectoires à l’aide d’une mesure de dissimilarité sur les spectres en ondelettes.